4.7 Article

Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 39, 期 3, 页码 381-391

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2005.03.020

关键词

diabetes; nox1; nox4; NADPH oxidase; endothelial dysfunction

向作者/读者索取更多资源

The nox2-dependent NADPH oxidase was shown to be a major superoxide source in vascular disease, including diabetes. Smooth muscle cells of large arteries lack the phagocytic gp91(phox) subunit of the enzyme; however, two homologues have been identified in these cells, nox1 and nox4. It remained to be established whether also increases in protein levels of the nonphagocytic NADPH oxidase contribute to increased superoxide formation in diabetic vessels. To investigate changes in the expression of these homologues, we measured their expression in aortic vessels of type I diabetic rats. Eight weeks after streptozotocin treatment, we found a doubling in nox1 protein expression, while the expression of nox4 remained unchanged. This was associated with a significant increase in the NADPH oxidase activity in membrane fractions of diabetic heart and aortic tissue. Furthermore, we observed a decreased sensitivity of diabetic vessels to acetylcholine and nitroglycerin and a decrease in both acetylcholine-stimulated NO production and phosphorylation of VASP, despite an increase in endothelial NO synthase (NOSIII) expression. In addition, xanthine oxidase activity was markedly increased in plasma and 100,000 g supernatant of cardiac tissue of diabetic rats, while myocardial mitochondrial superoxide formation was only weakly enhanced. We conclude that in addition to phagocytic NADPH oxidase, also nonphagocytic, vascular NADPH oxidase subunit nox1, uncoupled NOSIII, and plasma xanthine oxidase contribute to endothelial dysfunction in the setting of diabetes mellitus. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据