4.5 Article

Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy:: In vitro and in vivo

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 94, 期 8, 页码 1782-1793

出版社

ELSEVIER SCIENCE INC
DOI: 10.1002/jps.20397

关键词

RGD; sterically stabilized liposomes; targeted drug delivery; tumor therapy; doxorubicin

向作者/读者索取更多资源

Passive targeting by sterically stabilized liposomes (SSL), once combined with efficient intracellular delivery, may be a very useful strategy to improve the antitumor efficacy for the anticancer agents. The arginine-glycine-aspartic acid tripeptide (RGD) is known to serve as a recognition motif for several different integrins located on cell surface. In this study, the RGD tripeptide was coupled to the distal end of the poly (ethylene glycol)-coated liposomes (RGD-SSL) aimed to achieve increased tumor accumulation and enhanced intracellular uptake.. DOX-loaded RGD-SSL (RGD-SSLDOX), DOX-loaded SSL (SSL-DOX), and free DOX were compared with respect to their in vitro uptake and cytotoxicity and their in vivo biodistribution and therapeutic efficacy in tumor-bearing mice. Flow cytometry and confocal microscopy studies revealed that RGD-SSL could facilitate the DOX uptake into melanoma cells by integrin-mediated endocytosis. RGD-SSL-DOX displayed higher cytotoxicity on melanoma cells than SSL-DOX. While RGD-SSL-DOX demonstrated prolonged circulation time and increased tumor accumulation as SSL-DOX did, it showed remarkably higher splenic uptake than SSL-DOX. Mice receiving RGD-SSL-DOX (5 mg DOX/kg) showed effective retardation in tumor growth compared with those receiving same dose of SSL-DOX, free DOX solution, or saline. These results suggest that RGD-modified SSL may be a feasible intracellular targeting carrier for efficient delivery of chemotherapeutic agents into tumor cells. (c) 2005 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据