4.4 Article

Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis

期刊

GLYCOBIOLOGY
卷 15, 期 8, 页码 747-775

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwi061

关键词

cystic fibrosis; airway mucin; sulfation; O-glycans; MALDI-TOF-MS

资金

  1. NHLBI NIH HHS [HL065509] Funding Source: Medline

向作者/读者索取更多资源

Cystic fibrosis (CF) is the most lethal genetic disorder in Caucasians and is characterized by the production of excessive amounts of viscous mucus secretions in the airways of patients, leading to airway obstruction, chronic bacterial infections, and respiratory failure. Previous studies indicate that CF-derived airway mucins are glycosylated and sulfated differently compared with mucins from nondiseased (ND) individuals. To address unresolved questions about mucin glycosylation and sulfation, we examined O-glycan structures in mucins purified from mucus secretions of two CF donors versus two ND donors. All mucins contained galactose (Gal), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose (Fuc), and sialic acid (Neu5Ac). However, CF mucins had higher sugar content and more O-glycans compared with ND mucins. Both ND and CF mucins contained GlcNAc-6-sulfate (GlcNAc-6-Sul), Gal-6-Sul, and Gal-3-Sul, but CF mucins had higher amounts of the 6-sulfated species. O-glycans were released from CF and ND mucins and derivatized with 2-aminobenzamide (2-AB), separated by ion exchange chromatography, and quantified by fluorescence. There was nearly a two-fold increase in sulfation and sialylation in CF compared with ND mucin. High performance liquid chromatography (HPLC) profiles of glycans showed differences between the two CF samples compared with the two ND samples. Glycan compositions were defined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Unexpectedly, 260 compositional types of O-glycans were identified, and CF mucins contained a higher proportion of sialylated and sulfated O-glycans compared with ND mucins. These profound structural differences in mucin glycosylation in CF patients may contribute to inflammatory responses and increased pathogenesis by Pseudomonas aeruginosa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据