4.6 Article

Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 74, 期 18, 页码 5710-5723

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01121-08

关键词

-

资金

  1. IOP Genomics Program of Senter Novem, The Netherlands

向作者/读者索取更多资源

The ability of baker's yeast (Saccharomyces cerevisiae) to rapidly increase its glycolytic flux upon a switch from respiratory to fermentative sugar metabolism is an important characteristic for many of its multiple industrial applications. An increased glycolytic flux can be achieved by an increase in the glycolytic enzyme capacities (V-max) and/or by changes in the concentrations of low-molecular-weight substrates, products, and effectors. The goal of the present study was to understand the time-dependent, multilevel regulation of glycolytic enzymes during a switch from fully respiratory conditions to fully fermentative conditions. The switch from glucose-limited aerobic chemostat growth to full anaerobiosis and glucose excess resulted in rapid acceleration of fermentative metabolism. Although the capacities (V-max) of the glycolytic enzymes did not change until 45 min after the switch, the intracellular levels of several substrates, products, and effectors involved in the regulation of glycolysis did change substantially during the initial 45 min (e. g., there was a buildup of the phosphofructokinase activator fructose-2,6-bisphosphate). This study revealed two distinct phases in the upregulation of glycolysis upon a switch to fermentative conditions: (i) an initial phase, in which regulation occurs completely through changes in metabolite levels; and (ii) a second phase, in which regulation is achieved through a combination of changes in V-max and metabolite concentrations. This multilevel regulation study qualitatively explains the increase in flux through the glycolytic enzymes upon a switch of S. cerevisiae to fermentative conditions and provides a better understanding of the roles of different regulatory mechanisms that influence the dynamics of yeast glycolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据