4.6 Article

Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 74, 期 5, 页码 1324-1331

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.01901-07

关键词

-

向作者/读者索取更多资源

The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 mu M is shown to bind with about 50 mu M Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37 degrees C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a P-structure (39.8% +/- 2.2%, based on 5 samples) with negligible contribution of alpha-helix structure. When bound to Chlide, the P-structure content in the complex is reduced to 21.6% +/- 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 mu M, and 21.6 mu M, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据