4.7 Article

Stable and unstable vector dark solitons of coupled nonlinear Schrodinger equations: Application to two-component Bose-Einstein condensates

期刊

PHYSICAL REVIEW E
卷 72, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.026616

关键词

-

向作者/读者索取更多资源

The dynamics of vector dark solitons in two-component Bose-Einstein condensates is studied within the framework of coupled one-dimensional nonlinear Schrodinger (NLS) equations. We consider the small-amplitude limit in which the coupled NLS equations are reduced to coupled Korteweg-de Vries (KdV) equations. For a specific choice of the parameters the obtained coupled KdV equations are exactly integrable. We find that there exist two branches of (slow and fast) dark solitons corresponding to the two branches of the sound waves. Slow solitons, corresponding to the lower branch of the acoustic wave, appear to be unstable and transform during the evolution into stable fast solitons (corresponding to the upper branch of the dispersion law). Vector dark solitons of arbitrary depths are studied numerically. It is shown that effectively different parabolic traps, to which the two components are subjected, cause an instability of the solitons, leading to a splitting of their components and subsequent decay. A simple phenomenological theory, describing the oscillations of vector dark solitons in a magnetic trap, is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据