4.6 Article

A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics -: II.: Significance for the microbial community

期刊

HARMFUL ALGAE
卷 4, 期 5, 页码 875-893

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.hal.2004.12.012

关键词

bacterial community composition; lysis; mesocosms; N : P ratio; Phaeocystis globosa; transparent exopolymeric particles

向作者/读者索取更多资源

The impact of Phaeocystis globosa population decline on the microbial community was studied during a mesocosm experiment, with irradiance regime and inorganic N:P ratios (4, 16, and 44) as controlling factors. Heterotrophic bacterial activity was closely related to enhanced (viral) lysis rates of P. globosa cells and disintegration of the colonies. Up to 85% of the bacterial C demand could be supplied by P. globosa-specific cellular C release. The bacterial populations with high DNA content became dominant (>70% of total). The bacterial community showed a rapid shift in composition to take advantage of the changing conditions during the demise of the P. globosa bloom. Members of the Alphaproteobacteria and the Bacteroidetes group emerged directly upon bloom decay. Multidimensional scaling analysis in conjunction with DGGE fingerprinting implied that clustering was more related to the availability of organic carbon (the collapse of the P. gobosa bloom) than to the nature of the phytoplankton growth-controlling nutrient. Reduced irradiance delayed the development of the P. globosa population and subsequently changes in the bacterial community composition. Disintegration of R globosa colonies resulted in the formation of transparent exopolymeric particles (TEP) and aggregates, more so under P-depletion than under N-deficient conditions. The colonial matrix transformed into big aggregates under P-depleted conditions but remained largely as ghost colonies under N-depleted conditions. In the mesocosm with initial nitrogen and phosphorus supplied in the Redfield ratio, features intermediate to conditions with either N- or P-depletion were observed. It was hypothesized that TEP affected microbial population dynamics directly through bacterial colonization and indirectly through scavenging of predators and viruses. (C) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据