4.8 Article

Measurement of the conductance of single conjugated molecules

期刊

NATURE
卷 436, 期 7051, 页码 677-680

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature03898

关键词

-

向作者/读者索取更多资源

Electrical conduction through molecules depends critically on the delocalization of the molecular electronic orbitals and their connection to the metallic contacts. Thiolated (-SH) conjugated organic molecules are therefore considered good candidates for molecular conductors(1,2): in such molecules, the orbitals are delocalized throughout the molecular backbone, with substantial weight on the sulphur - metal bonds(1-4). However, their relatively small size, typically similar to 1 nm, calls for innovative approaches to realize a functioning single-molecule device(5-11). Here we report an approach for contacting a single molecule, and use it to study the effect of localizing groups within a conjugated molecule on the electrical conduction. Our method is based on synthesizing a dimer structure, consisting of two colloidal gold particles connected by a dithiolated short organic molecule(12,13), and electrostatically trapping it between two metal electrodes. We study the electrical conduction through three short organic molecules: 4,4' - biphenyldithiol (BPD), a fully conjugated molecule; bis( 4-mercaptophenyl)- ether (BPE)(14), in which the conjugation is broken at the centre by an oxygen atom; and 1,4-benzenedimethanethiol (BDMT), in which the conjugation is broken near the contacts by a methylene group. We find that the oxygen in BPE and the methylene groups in BDMT both suppress the electrical conduction relative to that in BPD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据