4.8 Article

Adult mice cloned from migrating primordial germ cells

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0504943102

关键词

developmental totipotency; DNA methylation; imprinted genes; nuclear transfer

资金

  1. NICHD NIH HHS [R01 HD042772, HD042772] Funding Source: Medline

向作者/读者索取更多资源

We previously reported that the genomes of gonadal germ cells at 11.5-19.5 days postcoitum (dpc) are incompetent to support fullterm development of cloned mouse embryos. In this study, we performed nuclear transfer using primordial germ cells (PGCs) from earlier stages at 8.5-10.5 dpc. When PGC nuclei at 8.5, 9.5, and 10.5 dpc were transferred into enucleated oocytes, seven cloned embryos developed into full-term offspring. Of these, five, all derived from 8.5- or 9.5-dpc PGCs, developed into healthy adults with normal fertility. Of the remaining two offspring derived from 10.5-dpc PGCs, one died shortly after birth, and the other showed slight growth retardation but subsequently developed into a fertile adult. We examined allele-specific methylation at the imprinted H19 and Snrpn loci in 9.5- to 11.5-dpc PGCs. Although the beginning of methylation erasure was evident on the H19 paternal allele at 9.5 dpc, most PGCs did not demonstrate significant erasure of paternal allele-specific methylation until 10.5 dpc. Maternal allele-specific methylation was largely erased from Snrpn by 10.5 dpc. By 11.5 dpc, the majority of PGCs showed nearly complete or complete erasure of allele-specific methylation in both H19 and Snrpn. These results demonstrate that at least some genomic imprints remain largely intact in 8.5- to 9.5-dpc PGCs and then undergo erasure at approximate to 10.5 dpc as the PGCs enter the genital ridges. Thus, migrating PGCs at 8.5-9.5 dpc can be successfully used as donors for nuclear transfer, whereas gonadal PGCs at 11.5 dpc and later are incompetent to support full-term development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据