4.8 Article

Coherent locomotion as an attracting state for a free flapping body

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0505064102

关键词

bifurcation; flight; symmetry-breaking; instability; fluid-structure interaction

向作者/读者索取更多资源

A recent experiment [Vandenberghe, N., Zhang, J. & Childress, S. (2004) J. Fluid Mech. 506, 147-155] has shown that an axle-mounted blade can spontaneously rotate when oscillated (or flapped) above a critical frequency in a fluid. To understand the nature of flapping locomotion we study numerically the dynamics of a simple body, flapped up and down within a viscous fluid and free to move horizontally. We show here that, at sufficiently large frequency Reynolds number, unidirectional locomotion emerges as an attracting state for an initially nonlocomoting body. Locomotion is generated in two stages: first, the fluid field loses symmetry by an instability similar to the classical von Karman instability; and second, precipitous interactions with previously shed vortical structures push the body into locomotion. Body mass and slenderness play central and unexpected roles in each stage. Conceptually, this work demonstrates how locomotion can be transduced from the simple oscillations of a body through an interaction with its fluid environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据