4.7 Article

Establishment of a human non-small cell lung cancer cell line resistant to gefitinib

期刊

INTERNATIONAL JOURNAL OF CANCER
卷 116, 期 1, 页码 36-44

出版社

WILEY
DOI: 10.1002/ijc.20985

关键词

resistance; gefitimb; EGFR; Grb2; SOS; non-small cell lung cancer

类别

向作者/读者索取更多资源

The epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitor gefitinib (Iressa (R), ZD1839) has shown promising activity preclinically and clinically. Because comparative investigations of drug-resistant sublines with their parental cells are useful approaches to identifying the mechanism of gefitinib resistance and select factors that determine sensitivity to gefitinib, we established a human non-small cell lung carcinoma subline (PC-9/ZD) that is resistant to gefitinib. PC-9/ZD cells are similar to 180-fold more resistant to gefitinib than their parental PC-9 cells and PC-9/ZD cells do not exhibit cross-resistance to conventional anticancer agents or other tyrosine kinase inhibitors, except AG-1478, a specific inhibitor of FGFR. PC-9/ZD cells also display significant resistance to gefitinib in a tumor-bearing animal model. To elucidate the mechanism of resistance, we characterized PC-9/ZD cells. The basal level EGFR in PC-9 and PC-9/ZD cells was comparable. A deletion mutation was identified within the kinase domain of EGFR in both PC-9 and PC-9/ZD, but no difference in the sequence of EGFR cDNA was detected in either cell line. Increased EGFR/HER2 (and EGFR/HER3) heterodimer formations were demonstrated in PC-9/ZD cells by chemical cross-linking and immunoprecipitation analysis in cells unexposed to gefitinib. Exposure to gefitinib increased heterodimer formation in PC-9 cells, but not in PC-9/ZD cells. Gefitinib inhibits EGFR autophosphorylation in a dose-dependent manner in PC-9 cells but not in PC-9/ZD cells. A marked difference in inhibition of site-specific phosphorylation of EGFR was observed at Tyr1068 compared to other tyrosine residues (Tyr845, 992 and 1045). To elucidate the downstream signaling in the PC9/ZD cellular machinery, complex formation between EGFR and its adaptor proteins GRB2, SOS, and Shc was examined. A marked reduction in the GRB2-EGFR complex and absence of SOS-EGFR were observed in PC-9/ZD cells, even though the protein levels of GRB2 and SOS in PC-9 and PC-9/ZD cells were comparable. Expression of phosphorylated AKT was increased in PC-9 cells and inhibited by 0.02 mu M gefitinib. But the inhibition was not significant in PC-9/ZD cells. These results suggest that alterations of adaptor-protein-mediated signal transduction from EGFR to AKT is a possible mechanism of the resistance to gefitinib in PC-9/ZD cells. These phenotypes including EGFR-SOS complex and heterodimer formation of HER family members are potential biomarkers for predicting resistance to gefitinib. (c) 2005 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据