4.4 Article

High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid

期刊

JOURNAL OF NON-NEWTONIAN FLUID MECHANICS
卷 129, 期 1, 页码 23-37

出版社

ELSEVIER
DOI: 10.1016/j.jnnfm.2005.04.007

关键词

fractional step method; DEVSS-G/DG; viscoelastic flow simulation; 4 : 1 planar contraction flow

向作者/读者索取更多资源

In this work, we present high-resolution solutions for viscoelastic 4:1 planar contraction flow problems using a transient finite element method based on the fractional step method (FSM) and stabilization techniques (DEVSS-G/DG) with linear equal-order interpolation function. The Oldroyd-B model was used as the constitutive equation. A parallel multi-frontal algorithm was implemented to enhance computational speed and all solutions were obtained on a parallel machine. The vortex intensity and the re-attachment length of corner vortex show good mesh-convergent behavior and are compared with previous results from the literature. In particular, the present results are in good agreement with the predictions of the high-resolution finite volume method of Alves et al. [15]. This may be the first case that quantitative agreement is obtained between studies using different numerical methods for the benchmark problem of 4:1 planar contraction flow. As there has been little quantitative agreement in the previous investigations and only few simulation results with highly refined meshes exit, this study may well be regarded as accurate and meaningful in the sense that reasonable convergence is achieved for prediction of 4:1 planar contraction flow using transient finite element methods. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据