4.6 Article

Key role of conserved histidines in recombinant mouse β-carotene 15,15′-monooxygenase-1 activity

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 32, 页码 29217-29223

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M500409200

关键词

-

向作者/读者索取更多资源

Alignment of sequences of vertebrate beta-carotene 15,15'-monooxygenase-1 (BCMO1) and related oxygenases revealed four perfectly conserved histidines and five acidic residues (His(172), His(237), His(308), His(514), Asp(52), Glu(140), Glu(314), Glu(405), and Glu(457) in mouse BCMO1). Because BCMO1 activity is iron-dependent, we propose that these residues participate in iron coordination and therefore are essential for catalytic activity. To test this hypothesis, we produced mutant forms of mouse BCMO1 by replacing the conserved histidines and acidic residues as well as four histidines and one glutamate nonconserved in the overall family with alanines by site-directed mutagenesis. Our in vitro and in vivo data showed that mutation of any of the four conserved histidines and Glu405 caused total loss of activity. However, mutations of non-conserved histidines or any of the other conserved acidic residues produced impaired although enzymatically active proteins, with a decrease in activity mostly due to changes in V-max. The iron bound to protein was determined by inductively coupled plasma atomic emission spectrometry. Bound iron was much lower in preparations of inactive mutants than in the wild-type protein. Therefore, the conserved histidines and Glu405 are absolutely required for the catalytic mechanism of BCMO1. Because the mutant proteins are impaired in iron binding, these residues are concluded to coordinate iron required for catalytic activity. These data are discussed in the context of the predicted structure for the related eubacterial apocarotenal oxygenase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据