4.8 Article

Band structure and quantum conductance of nanostructures from maximally localized wannier functions: The case of functionalized carbon nanotubes

期刊

PHYSICAL REVIEW LETTERS
卷 95, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.95.076804

关键词

-

向作者/读者索取更多资源

We have combined large-scale, Gamma-point electronic-structure calculations with the maximally localized Wannier functions approach to calculate efficiently the band structure and the quantum conductance of complex systems containing thousands of atoms while maintaining full first-principles accuracy. We have applied this approach to study covalent functionalizations in metallic single-walled carbon nanotubes. We find that the band structure around the Fermi energy is much less dependent on the chemical nature of the ligands than on the sp(3) functionalization pattern disrupting the conjugation network. Common aryl functionalizations are more stable when paired with saturating hydrogens; even when paired, they still act as strong scattering centers that degrade the ballistic conductance of the nanotubes already at low degrees of coverage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据