4.5 Article

Effector-induced Syk-mediated phosphorylation in human erythrocytes

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbamcr.2004.12.010

关键词

Syk; tyrosine-phosphorylation; human erythrocyte; band 3

向作者/读者索取更多资源

Band 3 (AEI), the most prominent polypeptide of the human erythrocyte membrane, becomes heavily tyrosine phosphorylated following treatment of intact cells with protein tyrosine phosphatase inhibitors such as diamide, pervanadate, vanadate, or N-ethylmaleimide (NEM). The mechanism underlying this tyrosine phosphorylation is thought to involve the sequential action of two protein tyrosine kinases, Syk (p72(syk)) and Lyn (p53/56(lyn)). While Lyn catalysed phosphorylation appears to be strictly dependent on prior phosphorylation of Tyr8 and 21 of band 3 by Syk, little is known about the mechanism of induction of Syk phosphorylation. Data presented here show that both the fraction of Syk that associates with the membrane and the extent of phosphorylation of band 3 differ in response to the above inhibitors. While diamide and NEM stimulate syk translocation to the membrane during their induction of band 3 tyrosine phosphorylation, pervanadate and vanadate induce no change in kinase distribution. Moreover, diamide and NEM-induced Syk recruitment to the membrane are phosphotyrosine independent and involve their preferential association with Triton X-100-insoluble membrane skeletons. Together these data reveal a complex process controlling the association and catalytic activity of protein tyrosine kinases syk and lyn with the human erythrocyte membrane. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据