4.6 Article

Methionine aminopeptidases type I and type II are essential to control cell proliferation

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 95, 期 6, 页码 1191-1203

出版社

WILEY
DOI: 10.1002/jcb.20493

关键词

cell proliferation; enzyme inhibition; HUVEC; MetAP-1; MetAP-2

向作者/读者索取更多资源

The dependence of cell growth on methionine aminopeptidase (MetAP) function in bacteria and yeast is firmly established. Here we report experimental evidence that the control of cell proliferation in mammalian cells is directly linked and strictly dependent on the activity of both MetAP-1 and MetAP-2. The targeted downregulation of either methionine aminopeptidase MetAP-l or MetAP-2 protein expression by small interfering RNA (SiRNA) significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) (70%-80%), while A549 human lung carcinoma cell proliferation was less inhibited (20%-30%). The cellular levels of MetAP-2 enzyme were measured after MetAP-2 si RNA treatment and found to decrease over time from 4 to 96 h, while rapid and complete depletion of MetAP-2 enzyme activity was observed after 4 h treatment with two pharmacological inhibitors of MetAP-2, PPI-2458 and fumagillin. When HUVEC and A549 cells were treated simultaneously with MetAP-2 siRNA and PPI-2458, or fumagillin, which irreversibly inhibit MetAP-2 enzyme activity, no additive effect on maximum growth inhibition was observed. This strongly suggests that MetAP-2 is the single critical cellular enzyme affected by either MetAP-2 targeting approach. Most strikingly, despite their significantly different sensitivity to growth inhibition after targeting of either MetAP-1 or MetAP-2, HUVEC, and A549 cells, which were made functionally deficient in both MetAP-1 and MetAP-2 were completely or almost completely inhibited in their growth, respectively. This closely resembled the observed growth inhibition in genetically double-deficient map1map2 yeast strains. These results suggest that MetAP-1 and MetAP-2 have essential functions in the control of mammalian cell proliferation and that MetAP-dependent growth control is evolutionarily highly conserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据