4.8 Article

Label-free electrochemical detection for aptamer-based array electrodes

期刊

ANALYTICAL CHEMISTRY
卷 77, 期 16, 页码 5107-5113

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac050192m

关键词

-

向作者/读者索取更多资源

An electrochemical impedance spectroscopy method of detection for aptamer-based array electrodes is reported in which the binding of aptamers immobilized on gold electrodes leads to impedance changes associated with target protein binding events. Human IgE was used as a model target protein and incubated with the aptamer-based array consisting of single-stranded DNA containing a hairpin loop. To increase the binding efficiency for proteins, a hybrid modified layer containing aptamers and cysteamine was fabricated on the photolithographic gold surface through molecular self-assembly. Atomic force microscopy analysis demonstrated that human IgE could be specifically captured by the aptamer and stand well above the self-assembled monolayer (SAM) surface. Compared to immunosensing methods using anti-human IgE antibody as the recognition element, impedance spectroscopy detection could provide higher sensitivity and better selectivity for aptamer-modified electrodes. The results of this method show good correlation for human IgE in the range of 2.5-100 nM. A detection limit of 0.1 nM (5 fmol in a 50-mu L sample) was obtained, and an average of the relative standard deviation was < 10%. The method herein describes the first label-free detection for arrayed electrodes utilizing electrochemical impedance spectroscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据