4.6 Article

Calibration of mass spectrometric peptide mass fingerprint data without specific external or internal calibrants

期刊

BMC BIOINFORMATICS
卷 6, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1471-2105-6-203

关键词

-

向作者/读者索取更多资源

Background: Peptide Mass Fingerprinting (PMF) is a widely used mass spectrometry ( MS) method of analysis of proteins and peptides. It relies on the comparison between experimentally determined and theoretical mass spectra. The PMF process requires calibration, usually performed with external or internal calibrants of known molecular masses. Results: We have introduced two novel MS calibration methods. The first method utilises the local similarity of peptide maps generated after separation of complex protein samples by two-dimensional gel electrophoresis. It computes a multiple peak-list alignment of the data set using a modified Minimum Spanning Tree (MST) algorithm. The second method exploits the idea that hundreds of MS samples are measured in parallel on one sample support. It improves the calibration coefficients by applying a two-dimensional Thin Plate Splines (TPS) smoothing algorithm. We studied the novel calibration methods utilising data generated by three different MALDI-TOF-MS instruments. We demonstrate that a PMF data set can be calibrated without resorting to external or relying on widely occurring internal calibrants. The methods developed here were implemented in R and are part of the BioConductor package mscalib available from http:// www. bioconductor. org. Conclusion: The MST calibration algorithm is well suited to calibrate MS spectra of protein samples resulting from two-dimensional gel electrophoretic separation. The TPS based calibration algorithm might be used to correct systematic mass measurement errors observed for large MS sample supports. As compared to other methods, our combined MS spectra calibration strategy increases the peptide/protein identification rate by an additional 5 - 15%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据