4.6 Article

Giant tunneling magnetoresistance effect in low-resistance CoFeB/MgO(001)/CoFeB magnetic tunnel junctions for read-head applications

期刊

APPLIED PHYSICS LETTERS
卷 87, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2012525

关键词

-

向作者/读者索取更多资源

The giant tunneling magnetoresistance effect has been achieved in low-resistance CoFeB/MgO(001)/CoFeB magnetic tunnel junctions (MTJs) at room temperature. A magnetoresistance (MR) ratio as high as 138%, seven times that of state-of-the-art MTJs for magnetic sensor application, was obtained at room temperature in MTJs with a resistance-area product (RA) as low as 2.4 Omega mu m(2). Such a high MR ratio at such a low resistance was made possible by introducing an ultrathin Mg metal layer with a thickness of 4 A between the CoFeB bottom electrode layer and the MgO(001) tunnel barrier layer. The Mg layer was slightly but not fully oxidized, which resulted in a reduction in MR for a thicker MgO barrier (high RA) region and in an increase in MR for a thinner barrier (low RA) region. The Mg layer improves the crystalline orientation of the MgO(001) layer when the MgO(001) layer is thin. These MTJs will accelerate the realization of highly sensitive read heads for ultrahigh-density hard-disk drives. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据