4.6 Article

Single-molecule mobility and spectral measurements in submicrometer fluidic channels

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2005371

关键词

-

向作者/读者索取更多资源

Electrophoretic mobility differences of biological molecules are frequently exploited to physically separate and subsequently identify the components of a mixture. We present a method to rapidly identify single molecules by measuring both their mobility and fluorescence emission under continuous flow without separation. Submicrometer fluidic channels were used to detect individual nucleic-acid-engineered fluorescent labels driven electrokinetically in free solution. Two separate focal volumes along the length of the fluidic channel collected spectral, spatial, and temporal information from the passage of fluorescent labels through the channel. One focal volume was defined by a focused 488-nm-wavelength laser and the other by a focused 568-nm laser. The subfemtoliter focal volumes resulted in signal-to-noise ratios sufficient for single-fluorophore detection, and the two excitation wavelengths enabled detection of multicolor fluorescent labels and discrimination of single-color detection events. Each fluorescent label was uniformly excited and analyzed as it passed through the channel. Flow control facilitated high throughput at low concentrations, as well as a balance of several experimental parameters. Two fluorescent labels were considered for identification by single-molecule mobility measurements. Approximately 81% of fluorescent labels of one variety and 77% of the other were found to be identifiable based on their mobility alone. As implemented, this method could be used in conjunction with spectral analysis of fluorescent labels to enhance the resolution of single-molecule identification. Ultimately, this technique could be used autonomously to detect biomolecules bound to fluorescent labels and to identify similarly labeled biomolecules by their mobility. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据