4.8 Article

Vitamin C biosynthesis in trypanosomes: A role for the glycosome

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0504251102

关键词

ascorbic acid; FAD; oxidase; Trypanosoma brucei

资金

  1. Wellcome Trust Funding Source: Medline

向作者/读者索取更多资源

The capacity to synthesize vitamin C (ascorbate) is widespread in eukaryotes but is absent from humans. The last step in the biosynthetic pathway involves the conversion of an alclonolactone substrate to ascorbate, a reaction catalyzed by members of an FAD-dependent family of oxidoreductases. Here we demonstrate that both the African trypanosome, Trypanosoma brucei, and the American trypanosome, Trypanosoma cruzi, have the capacity to synthesize vitamin C and show that this reaction occurs in a unique single-membrane organelle, the glycosome. The corresponding T. brucei flavoprotein (TbALO) obeys Michaelis-Menten kinetics and can utilize both L-galactono-gamma-lactone and D-arabinono-gamma-lactone as substrate, properties characteristic of plant and fungal enzymes. We could detect no activity toward the mammalian enzyme substrate L-gulono-gamma-lactone. TbALO null mutants (bloodstream form) were found to display a transient growth defect, a trait that was enhanced when they were cultured in medium in which the essential serum component had been pretreated with ascorbate oxidase to deplete vitamin C. It is implicit, therefore, that bloodstream-form trypanosomes also possess a capacity for ascorbate transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据