4.7 Article

A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 33, 页码 7682-7686

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2211-05.2005

关键词

circadian rhythm; calcium; potassium; suprachiasmatic nucleus; Period 1; PERIOD 2

资金

  1. NHLBI NIH HHS [HL71510, R01 HL071510] Funding Source: Medline
  2. NIMH NIH HHS [R01 MH062517, MH62517, R01 MH062517-03] Funding Source: Medline
  3. NINDS NIH HHS [R01 NS055361-05] Funding Source: Medline

向作者/读者索取更多资源

Generation of mammalian circadian rhythms involves molecular transcriptional and translational feedback loops. It is not clear how membrane events interact with the intracellular molecular clock or whether membrane activities are involved in the actual generation of the circadian rhythm. We examined the role of membrane potential and calcium (Ca2+) influx in the expression of the circadian rhythm of the clock gene Period 1 (Per1) within the rat suprachiasmatic nucleus (SCN), the master pacemaker controlling circadian rhythmicity. Membrane hyperpolarization, caused by lowering the extracellular concentration of potassium or blocking Ca2+ influx in SCN cultures by lowering [Ca2+], reversibly abolished the rhythmic expression of Per1. In addition, the amplitude of Per1 expression was markedly decreased by voltage-gated Ca2+ channel antagonists. A similar result was observed for mouse Per1 and PER2. Together, these results strongly suggest that a transmembrane Ca2+ flux is necessary for sustained molecular rhythmicity in the SCN. We propose that periodic Ca2+ influx, resulting from circadian variations in membrane potential, is a critical process for circadian pacemaker function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据