4.8 Article

Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells

期刊

JOURNAL OF CONTROLLED RELEASE
卷 106, 期 1-2, 页码 214-223

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2005.04.014

关键词

localized delivery; transfection; layer-by-layer; DNA; polyelectrolytes

资金

  1. NIBIB NIH HHS [EB02746] Funding Source: Medline

向作者/读者索取更多资源

Multilayered polyelectrolyte films fabricated from plasmid DNA and a hydrolytically degradable synthetic polycation can be used to direct the localized transfection of cells without the aid of a secondary transfection agent. Multilayered assemblies 100 nm thick consisting of alternating layers of synthetic polymer I and plasmid DNA encoding for enhanced green fluorescent protein (EGFP) were deposited on quartz substrates using a layer-by-layer fabrication procedure. The placement of film-coated slides in contact with COS-7 cells growing in serum-containing culture medium resulted in gene expression in cells localized under the film-coated portion of the slides. The average percentage of cells expressing EGFP relative to the total number of cells ranged from 4.6% to 37.9%, with an average of 18.6% +/- 8.2%, as determined by fluorescence microscopy. In addition to providing a mechanism for the immobilization of DNA at the cell/surface interface, a preliminary analysis of film topography by atomic force microscopy (AFM) demonstrated that polymer 1/DNA films undergo significant structural rearrangements upon incubation to present surface bound condensed plasmid DNA nanoparticles. These data suggest that the presence of the cationic polymer in these materials may also contribute to the internalization and expression of plasmid. The materials and design principles reported here present an attractive framework for the local or non-invasive delivery of DNA from the surfaces of implantable materials or biomedical devices. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据