4.6 Article

Aberrantly increased hydrophobicity shared by mutants of Cu,Zn-superoxide dismutase in familial amyotrophic lateral sclerosis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 33, 页码 29771-29779

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M504039200

关键词

-

资金

  1. NINDS NIH HHS [R01 NS044170, R01 NS41739, R01 NS44170] Funding Source: Medline

向作者/读者索取更多资源

More than 100 different mutations in the gene encoding Cu, Zn-superoxide dismutase (SOD1) cause preferential motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS). Although the cellular target(s) of mutant SOD1 toxicity have not been precisely specified, evidence to date supports the hypothesis that ALS-related mutations may increase the burden of partially unfolded SOD1 species. Influences that may destabilize SOD1 in vivo include impaired metal ion binding, reduction of the intrasubunit disulfide bond, or oxidative modification. In this study, we observed that metal-deficient as-isolated SOD1 mutants (H46R, G85R, D124V, D125H, and S134N) with disordered electrostatic and zinc-binding loops exhibited aberrant binding to hydrophobic beads in the absence of other destabilizing agents. Other purified ALS-related mutants that can biologically incorporate nearly normal amounts of stabilizing zinc ions (A4V, L38V, G41S, D90A, and G93A) exhibited maximal hydrophobic behavior after exposure to both a disulfide reducing agent and a metal chelator, while normal SOD1 was more resistant to these agents. Moreover, we detected hydrophobic SOD1 species in lysates from affected tissues in G85R and G93A mutant but not wildtype SOD1 transgenic mice. These findings suggest that a susceptibility to the cellular disulfide reducing environment and zinc loss may convert otherwise stable SOD1 mutants into metal-deficient forms with locally destabilized electrostatic and zinc-binding loops. These abnormally hydrophobic SOD1 species may promote aberrant interactions of the enzyme with itself or with other cellular constituents to produce toxicity in familial ALS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据