4.7 Article

Postbounce evolution of core-collapse supernovae: Long-term effects of the equation of state

期刊

ASTROPHYSICAL JOURNAL
卷 629, 期 2, 页码 922-932

出版社

IOP PUBLISHING LTD
DOI: 10.1086/431788

关键词

equation of state; hydrodynamics; neutrinos; stars : neutron; supernovae : general

向作者/读者索取更多资源

We study the evolution of a supernova core from the beginning of the gravitational collapse of a 15M(circle dot) star up to 1 s after core bounce. We present results of spherically symmetric simulations of core-collapse supernovae by solving general relativistic v-radiation hydrodynamics in the implicit time differencing. We aim to explore the evolution of shock waves in the long term and investigate the formation of proto-neutron stars together with supernova neutrino signatures. These studies are done to examine the influence of the equation of state ( EOS) on the postbounce evolution of shock waves in the late phase and the resulting thermal evolution of proto-neutron stars. We compare two sets of EOSs, namely, those by Lattimer and Swesty ( LS-EOS) and by Shen et al. ( SH-EOS). We found that, for both EOSs, the core does not explode and the shock wave stalls similarly in the first 100 ms after bounce. A revival of the shock wave does not occur even after a long period in either case. However, the recession of the shock wave appears different beyond 200 ms after bounce, having different thermal evolution of the central core. A more compact proto - neutron star is found for LS-EOS than SH-EOS with a difference in the central density by a factor of similar to 2 and a difference of similar to 10 MeV in the peak temperature. The resulting spectra of supernova neutrinos are different to an extent that may be detectable by terrestrial neutrino detectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据