4.7 Article

Tracing the minimum-energy path on the free-energy surface

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.1948367

关键词

-

向作者/读者索取更多资源

The free-energy profile of a reaction can be estimated in a molecular-dynamics approach by imposing a mechanical constraint along a reaction coordinate (RC). Many recent studies have shown that the temperature can greatly influence the path followed by the reactants. Here, we propose a practical way to construct the minimum-energy path directly on the free-energy surface at a given temperature. First, we follow the blue-moon ensemble method to derive the expression of the free-energy gradient for a given RC. These derivatives are then used to find the actual minimum-energy reaction path at finite temperature, in a way similar to the intrinsic reaction path of Fukui on the potential-energy surface. [K. Fukui, J. Phys. Chem. 74, 4161 (1970)]. Once the path is known, one can calculate the free-energy profile using thermodynamic integration. We also show that the mass-metric correction cancels for many types of constraints, making the procedure easy to use. Finally, the minimum-free-energy path at 300 K for the addition of CCl2 to ethylene is compared with a path based on a simple one-dimensional reaction coordinate. A comparison is also given with the reaction path at 0 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据