4.7 Article

The concentrations of calcium buffering proteins in mammalian cochlear hair cells

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 34, 页码 7867-7875

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.1196-05.2005

关键词

cochlea; calcium; calbindin-D28k; calretinin; hair cells; immunocytochemistry; oncomodulin; parvalbumin-alpha; postembedding labeling

资金

  1. NIDCD NIH HHS [R01 DC001362, R01 DC 01362] Funding Source: Medline

向作者/读者索取更多资源

Calcium buffers are important for shaping and localizing cytoplasmic Ca2+ transients in neurons. We measured the concentrations of the four main calcium-buffering proteins (calbindin-D28k, calretinin, parvalbumin-alpha, and parvalbumin-beta) in rat cochlear hair cells in which Ca2+ signaling is a central element of fast transduction and synaptic transmission. The proteins were quantified by calibrating immunogold tissue counts against gels containing known amounts of each protein, and the method was verified by application to Purkinje cells in which independent estimates exist for some of the protein concentrations. The results showed that, in animals with fully developed hearing, inner hair cells had 1/10 of the proteinaceous calcium buffer of outer hair cells in which the cell body contained parvalbumin-beta (oncomodulin) and calbindin-D28k at levels equivalent to 5 mM calcium-binding sites. Both proteins were partially excluded from the hair bundles, which may permit fast unbuffered Ca2+ regulation of the mechanotransducer channels. The sum of the calcium buffer concentrations decreased in inner hair cells and increased in outer hair cells as the cells developed their adult properties during cochlear maturation. The results suggest that Ca2+ has distinct roles in the two types of hair cell, reflecting their different functions in auditory transduction. Ca2+ is used in inner hair cells primarily for fast phase-locked synaptic transmission, whereas Ca2+ may be involved in regulating the motor capability underlying cochlear amplification of the outer hair cell. The high concentration of calcium buffer in outer hair cells, similar only to skeletal muscle, may protect against deleterious consequences of Ca2+ loading after acoustic overstimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据