4.6 Article

ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 34, 页码 30150-30157

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M505368200

关键词

-

资金

  1. NHLBI NIH HHS [HL-18645, HL-55362] Funding Source: Medline

向作者/读者索取更多资源

ATP binding cassette transporter G1 (ABCG1) mediates the transport of cholesterol from cells to high density lipoprotein (HDL) but not to lipid-depleted apolipoprotein A-I. Here we show that human ABCG1 overexpressed in baby hamster kidney cells in the absence of lipoproteins traffics to the plasma membrane and redistributes membrane cholesterol to cell-surface domains accessible to treatment with the enzyme cholesterol oxidase. Cholesterol removed by HDL was largely derived from these domains in ABCG1 transfectants but not in cells lacking ABCG1. Overexpression of ABCG1 also increased cholesterol esterification, which was decreased by the addition of HDL, suggesting that a proportion of the cell-surface cholesterol not removed by HDL is transported to the intracellular esterifying enzyme acyl-CoA:cholesterol acyltransferase. A 638-amino acid ABCG1, which lacked the 40 N-terminal amino acids of the predicted full-length protein, was fully functional and of a similar size to ABCG1 expressed by cholesterol-loaded human monocyte-derived macrophages. Mutating an essential glycine residue in the Walker A motif abolished ABCG1-dependent cholesterol efflux and esterification and prevented localization of ABCG1 to the cell surface, indicating that the ATP binding domain in ABCG1 is essential for both lipid transport activity and protein trafficking. These studies show that ABCG1 redistributes cholesterol to cell-surface domains where it becomes accessible for removal by HDL, consistent with a direct role of ABCG1 in cellular cholesterol transport.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据