4.8 Article

Angular-ratiometric plasmon-resonance based light scattering for bioaffinity sensing

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 127, 期 34, 页码 12115-12121

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja052739k

关键词

-

资金

  1. NCRR NIH HHS [P41 RR008119, RR008119] Funding Source: Medline
  2. NIGMS NIH HHS [R21 GM070929, GM070929] Funding Source: Medline

向作者/读者索取更多资源

We describe an exciting opportunity for affinity biosensing using a ratiometric approach to the angular-dependent light scattering from bioactivated and subsequently aggregated noble metal colloids. This new model sensing platform utilizes the changes in particle scattering from very small colloids, which scatter light according to traditional Rayleigh theory, as compared to the changes in scattering observed by much larger colloidal aggregates, formed due to a bioaffinity reaction. These larger aggregates no longer scatter incident light in a Cos(2) theta dependence, as is the case for Rayleigh scattering, but instead scatter light in an increased forward direction as compared to the incident geometry. By subsequently taking the ratio of the scattered intensity at two angles, namely 90 and 140, relative to the incident light, we can follow the association of biotinylated bovine serum albumin-coated 20 nm gold colloids, cross-linked by additions of streptavidin. This new model system can be potentially applied to many other nanoparticle assays and has many advantages over traditional fluorescence sensing and indeed light-scattering approaches. For example, a single nanoparticle can have the equivalent scattered intensity as 10(5) fluorescing fluorescein molecules substantially increasing detection; the angular distribution of scattered light from noble metal colloids is substantially easier to predict as compared to fluorescence; the scattered light is not quenched by biospecies; the ratiometric measurements described here are not dependent on colloid concentration as are other scattering techniques; and finally, the noble metal colloids are not prone to photodestruction, as is the case with organic fluorophores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据