4.8 Article

Aleurone cell identity is suppressed following connation in maize kernels

期刊

PLANT PHYSIOLOGY
卷 139, 期 1, 页码 204-212

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.105.064295

关键词

-

向作者/读者索取更多资源

Expression of the cytokinin-synthesizing isopentenyl transferase enzyme under the control of the Arabidopsis (Arabidopsis thaliana) SAG12 senescence-inducible promoter reverses the normal abortion of the lower floret from a maize (Zea mays) spikelet. Following pollination, the upper and lower floret pistils fuse, producing a connated kernel with two genetically distinct embryos and the endosperms fused along their abgerminal face. Therefore, ectopic synthesis of cytokinin was used to position two independent endosperms within a connated kernel to determine how the fused endosperm would affect the development of the two aleurone layers along the fusion plane. Examination of the connated kernel revealed that aleurone cells were present for only a short distance along the fusion plane whereas starchy endosperm cells were present along most of the remainder of the fusion plane, suggesting that aleurone development is suppressed when positioned between independent starchy endosperms. Sporadic aleurone cells along the fusion plane were observed and may have arisen from late or imperfect fusion of the endosperms of the connated kernel, supporting the observation that a peripheral position at the surface of the endosperm and not proximity to maternal tissues such as the testa and pericarp are important for aleurone development. Aleurone mosaicism was observed in the crown region of nonconnated SAG12-isopentenyl transferase kernels, suggesting that cytokinin can also affect aleurone development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据