4.6 Article

Representation of regular and irregular shapes in macaque inferotemporal cortex

期刊

CEREBRAL CORTEX
卷 15, 期 9, 页码 1308-1321

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhi014

关键词

categorization; object recognition; shapes; single cell; symmetry

向作者/读者索取更多资源

We determined the degree to which the response modulation of macaque inferior temporal (IT) neurons corresponds to perceptual versus physical shape similarities. IT neurons were tested with four groups of shapes. One group consisted of variations of simple, symmetrical (i.e. regular) shapes that differed in nonaccidental properties (NAPs, i.e. viewpoint-invariant), such as curved versus straight contours. The second and third groups were composed of, respectively, simple and complex asymmetrical (i.e. irregular) shapes, all with curved contours. A fourth group consisted of simple, asymmetrical shapes, but with straight (corners) instead of curved contours. The neural modulations were greater for the shapes differing in NAPs than for the shapes differing in the configuration of the convexities and concavities. Multidimensional scaling showed that a population code of the neural activity could readily distinguish the four shape groups. This pattern of neural modulation was strongly manifested in the results of a sorting task by human subjects but could not be predicted using current image-based models (i.e. pixel energies, V1-like Gabor-jet filtering and HMAX). The representation of shape in IT thus exceeds a mere faithful representation of physical reality, by emphasizing perceptually salient features relevant for essential categorizations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据