4.8 Article

The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces

期刊

BIOMATERIALS
卷 26, 期 25, 页码 5209-5220

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2005.01.045

关键词

hydrogels; poly(ethylene) glycol; RGD peptide; extracellular matrix; bone tissue engineering

资金

  1. NIAMS NIH HHS [AR44375-02] Funding Source: Medline

向作者/读者索取更多资源

Poly(ethylene glycol) hydrogels were synthesized with pendant peptide functionalities to examine the influence of synergistic peptide sequences on osteoblast adhesion, spreading, and function. Specifically, acrylated monomers were prepared that contained the peptide sequence, Arg-Gly Asp (RGD), as well as monomers with RGD plus its synergy site, Pro-His-Ser-Arg-Asn (PHSRN), linked via a polyglycine sequence to recapitulate the native spacing of fibronectin. The colocalized RGD-PHSRN sequence improved osteoblast adhesion, spreading, and focal contact formation when compared to RGD alone. In addition, proliferation, metabolic activity, and levels of alkaline phosphatase production, a common marker for osteoblast function, were statistically higher for the colocalized peptide sequences at I day, I week, and 2 weeks, when compared to control surfaces. Interestingly, increases were not observed in all areas of cell function, as extracellular matrix (ECM) production was the lowest on gels functionalized with the colocalized peptide sequence. This result was attributed to strong receptor-ligand interactions initiating signal transduction cascades that down-regulate ECM production. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据