4.6 Article

Candidate gustatory Interneurons modulating feeding behavior in the Drosophila brain

期刊

PLOS BIOLOGY
卷 3, 期 9, 页码 1618-1629

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pbio.0030305

关键词

-

向作者/读者索取更多资源

Feeding is a fundamental activity of all animals that can be regulated by internal energy status or external sensory signals. We have characterized a zinc finger transcription factor, klumpfuss (klu), which is required for food intake in Drosophila larvae. Microarray analysis indicates that expression of the neuropeptide gene hugin ( hug) in the brain is altered in klu mutants and that hug itself is regulated by food signals. Neuroanatomical analysis demonstrates that hug-expressing neurons project axons to the pharyngeal muscles, to the central neuroendocrine organ, and to the higher brain centers, whereas hug dendrites are innervated by external gustatory receptor-expressing neurons, as well as by internal pharyngeal chemosensory organs. The use of tetanus toxin to block synaptic transmission of hug neurons results in alteration of food intake initiation, which is dependent on previous nutrient condition. Our results provide evidence that hug neurons function within a neural circuit that modulates taste-mediated feeding behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据