4.6 Article

The ultrastructure of peripheral nerve, motor end-plate and skeletal muscle in patients suffering from spinal muscular atrophy with respiratory distress type 1 (SMARD1)

期刊

ACTA NEUROPATHOLOGICA
卷 110, 期 3, 页码 289-297

出版社

SPRINGER
DOI: 10.1007/s00401-005-1056-y

关键词

spinal muscular atrophy with respiratory distress type 1; spinal muscular atrophy with respiratory distress; neuronopathy; axonal atrophy; Wallerian degeneration

向作者/读者索取更多资源

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is genetically and clinically distinct from classic spinal muscular atrophy (SMA1). It results from mutations in the gene encoding immunoglobulin mu-binding protein 2 (IGHMBP2) on chromosome 11q13. Patients develop distally pronounced muscular weakness and early involvement of the diaphragm, resulting in respiratory failure. Sensory and autonomic nerves are also affected at later stages of the disease. We investigated peripheral nerves, skeletal muscles and neuromuscular junctions (NMJ) ultrastructurally in five unrelated patients and three siblings with genetically confirmed SMARD1. In mixed motor and sensory nerves we detected Wallerian degeneration and axonal atrophy similar to the ultrastructural findings described in SMA1. Isolated axonal atrophy was evident in purely sensory nerves. All investigated NMJ of patients with SMARD1 were dysmorphic and lacked a terminal axon. Moreover, we also observed characteristics of neuropathies, such as abnormalities in myelination, that have not been described in spinal muscular atrophies so far. Based on these findings we conclude that impairment of IGHMBP2 function leads to axonal degeneration, abnormal myelin formation, and motor end-plate degeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据