4.5 Article

Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode

期刊

ANALYTICAL BIOCHEMISTRY
卷 344, 期 1, 页码 16-24

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2005.05.035

关键词

catalase; multiwall carbon nanotubes; direct electrochemistry; glassy carbon; modified electrode; hydrogen peroxide; biosensor

向作者/读者索取更多资源

The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4 x 10(-10) mol cm(-2). The transfer coefficient (a) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s(-1) in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme. (C) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据