4.7 Article

The effects of electrostatic forces on the distribution of drops in a channel flow:: Two-dimensional oblate drops -: art. no. 093302

期刊

PHYSICS OF FLUIDS
卷 17, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2043147

关键词

-

向作者/读者索取更多资源

Numerical simulations are used to examine the effect of an electrostatic field on an emulsion of drops in a channel. The leaky-dielectric theory of Taylor is used to find the electric field, the charge distribution on the drop surface, and the resulting forces. The Navier-Stokes equations are solved using a front-tracking/finite-volume technique. Depending on the ratios of conductivity and permittivity of the drop fluid and the suspending fluid the drops can become oblate or prolate. In addition to normal forces that deform the drops, tangential forces can induce a fluid motion either from the poles of the drops to their equator or from the equator to the poles. In this paper we focus on oblate drops, where both the dielectrophoretic and the electrohydrodynamic interactions of the drops work together to fibrate the emulsion by lining the drops up into columns parallel to the electric field. When the flow through the channel is slow, the fibers can extend from one wall to the other. As the flow rate is increased the fibers are broken up and drops accumulate at the channel walls. For high enough flow rate, when the drop interactions are dominated by the fluid shear, the drops remain in suspension. Only two-dimensional systems are examined here, but the method can be used for fully three-dimensional systems as well. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据