4.7 Article

Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 56, 期 419, 页码 2527-2538

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eri246

关键词

Arabidopsis; ascorbic acid; BY-2 cells; hormone signalling; jasmonic acid

向作者/读者索取更多资源

Vitamin C (L-ascorbic acid) is an important primary metabolite of plants that functions as an antioxidant, an enzyme cofactor, and a cell-signalling modulator in a wide array of crucial physiological processes, including biosynthesis of the cell wall, secondary metabolites and phytohormones, stress resistance, photoprotection, cell division, and growth. Plants synthesize ascorbic acid via de novo and salvage pathways, but the regulation of its biosynthesis and the mechanisms behind ascorbate homeostasis are largely unknown. Jasmonic acid and its methyl ester (jasmonates) mediate plant responses to many biotic and abiotic stresses by triggering a transcriptional reprogramming that allows cells to cope with pathogens and stress. By using C-14-mannose radiolabelling combined with HPLC and transcript profiling analysis, it is shown that methyl jasmonate treatment increases the de novo synthesis of ascorbic acid in Arabidopsis and tobacco Bright Yellow-2 (BY-2) suspension cells. In BY-2 cells, this stimulation coincides with enhanced transcription of at least two late methyl jasmonate-responsive genes encoding enzymes for vitamin C biosynthesis: the GDP-mannose 3'',5''-epimerase and a putative L-gulono-1,4-lactone dehydrogenase/oxidase. As far as is known, this is the first report of a hormonal regulation of vitamin C biosynthesis in plants. Finally, the role of ascorbic acid in jasmonate-regulated stress responses is reviewed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据