4.3 Article

Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa

期刊

APMIS
卷 121, 期 11, 页码 1073-1081

出版社

WILEY
DOI: 10.1111/apm.12083

关键词

Biofilm; plant phenols; Pseudomonas aeruginosa; N-acyl-homoserine lactones; Quorum Sensing

资金

  1. Ministry of Education and Science of the Russian Federation [8307]

向作者/读者索取更多资源

In the natural environment, bacteria predominantly exist in matrix-enclosed multicellular communities associated with various surfaces, referred to as biofilms. Bacteria in biofilms are extremely resistant to antibacterial agents thus causing serious problems for antimicrobial therapy. In this study, we showed that different plant phenolic compounds, at concentrations that did not or weakly suppressed bacterial growth, increased the capacity of Pseudomonas aeruginosa PAO1 to form biofilms. Biofilm formation of P. aeruginosa PAO1 was enhanced 3- to 7-fold under the action of vanillin and epicatechin, and 2- to 2.5-fold in the presence of 4-hydroxybenzoic, gallic, cinnamic, sinapic, ferulic, and chlorogenic acids. At higher concentrations, these compounds displayed an inhibiting effect. Similar experiments carried out for comparison with Agrobacterium tumefaciens C58 showed the same pattern. Vanillin, 4-hydroxybenzoic, and gallic acids at concentrations within the range of 40 to 400g/mL increased the production of N-3-oxo-dodecanoyl-homoserine lactone in P. aeruginosa PAO1 which suggests a possible relationship between stimulation of biofilm formation and Las Quorum Sensing system of this bacterium. Using biosensors to detect N-acyl-homoserine lactones (AHL), we demonstrated that the plant phenolics studied did not mimic AHLs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据