4.4 Article

Humoral and cell-mediated adaptive immune responses are required for protection against Burkholderia pseudomallei challenge and bacterial clearance postinfection

期刊

INFECTION AND IMMUNITY
卷 73, 期 9, 页码 5945-5951

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.73.9.5945-5951.2005

关键词

-

向作者/读者索取更多资源

Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative bacillus endemic to areas of southeast Asia and northern Australia. Presently, there is no licensed vaccine for B. pseudomallei and the organism is refractive to antibiotic therapy. The bacterium is known to survive and multiply inside both phagocytic and nonphagocytic host cells and may be able to spread directly from cell to cell. Current vaccine delivery systems are unlikely to induce the correct immune effectors to stimulate a protective response to the organism. In this study, we have developed a procedure to utilize dendritic cells as a vaccine delivery vector to induce cell-mediated immune responses to B. pseudomallei. Dendritic cells were produced by culturing murine bone marrow progenitor cells in medium containing granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha. Purified dendritic cells were pulsed with heat-killed whole-cell B. pseudomallei and used to immunize syngeneic mice. Strong cellular immune responses were elicited by this immunization method, although antibody responses were low. Booster immunizations of either a second dose of dendritic cells or heat-killed B. pseudomallei were administered to increase the immune response. Immunized animals were challenged with fully virulent B. pseudomallei, and protection was demonstrated in those with strong Immoral and cell-mediated immunity. These results indicate the importance of both cell-mediated and humoral immune mechanisms in protection against intracellular pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据