4.4 Article

Gliding motility leads to active cellular invasion by Cryptosporidium parvum sporozoites

期刊

INFECTION AND IMMUNITY
卷 73, 期 9, 页码 5379-5387

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.73.9.5379-5387.2005

关键词

-

资金

  1. NIAID NIH HHS [R01 AI034036, AI017172-19, AI34036, R21 AI044967-01A1] Funding Source: Medline
  2. NIGMS NIH HHS [5T32GM07200-30, T32 GM007200] Funding Source: Medline

向作者/读者索取更多资源

We examined gliding motility and cell invasion by an early-branching apicomplexan, Cryptosporidium parvum, which causes diarrheal disease in humans and animals. Real-time video microscopy demonstrated that C. parvum sporozoites undergo circular and helical gliding, two of the three stereotypical movements exhibited by Toxoplasma gondii tachyzoites. C. parvum sporozoites moved more rapidly than T. gondii sporozoites, which showed the same rates of motility as tachyzoites. Motility by C parvum sporozoites was prevented by latrunculin B and cytochalasin D, drugs that depolymerize the parasite actin cytoskeleton, and by the myosin inhibitor 2,3-butanedione monoxime. Imaging of the initial events in cell entry by Cryptosporidium revealed that invasion occurs rapidly; however, the parasite does not enter deep into the cytosol but rather remains at the cell surface in a membrane-bound compartment. Invasion did not stimulate rearrangement of the host cell cytoskeleton and was inhibited by cytochalasin D, even in host cells that were resistant to the drug. Our studies demonstrate that C parvum relies on a conserved actin-myosin motor for motility and active penetration of its host cell, thus establishing that this is a widely conserved feature of the Apicomplexa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据