4.7 Article

Experimental results using force-feedback cueing in robot-assisted stroke therapy

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNSRE.2005.850428

关键词

constraint-induced movement therapy; hemiplegia; rehabilitation; robotics; stroke

向作者/读者索取更多资源

Stroke is the leading cause of disability among adults in the United States.. Behaviors such as learned nonuse hinder hemiplegic stroke survivors from the full use of both arms in activities of daily living. Active force-feedback cues, designed to restrain the use of the less-affected arm, were embedded into a meaningful driving simulation environment to create robot-assisted therapy device, driver's simulation environment for arm therapy (SEAT). The study hypothesized that force-feedback control mode could motivate stroke survivors to increase the productive use of their impaired arm throughout a bilateral steering task, by providing motivating feedback and reinforcement cues to reduce the overuse of the less-affected arm. Experimental results demonstrate that the force cues counteracted the tendency of hemiplegic subjects to produce counter-productive torques only during bilateral steering tasks (p < 0.05) that required the movement of their impaired arm in steering directions up and against gravity. Impaired arm activity was quantified in terms of torques due to the measured tangential forces on the split-steering wheel of driver's SEAT during bilateral steering. Results were verified using surface electromyograms recorded from key muscles in the impaired arm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据