4.3 Article

Geochemically generated, energy-rich substrates and indigenous microorganisms in deep, ancient groundwater

期刊

GEOMICROBIOLOGY JOURNAL
卷 22, 期 6, 页码 325-335

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/01490450500184876

关键词

subsurface; microbiology; sulfur isotopes; sulfate reduction; hydrogen; methane

向作者/读者索取更多资源

Recent studies have shown that the biosphere extends to depths that exceed 3 km, raising questions regarding the age of the microbes in these deep ecosystems and their sources of energy for metabolism. Abiogenic energy sources that are derived from in situ, purely geochemical sources and thus independent from photosynthesis have been suggested. We sampled saline fracture water emanating from a 3.1-km deep borehole in a Au mine in the Witwatersrand Basin of South Africa and characterized the chemical constituents (including stable isotopes), groundwater age, and indigenous microorganisms. Salinity data and ratios of dissolved noble gases indicate that extremely ancient (2.0 Ga) saline fracture water has mixed with meteoric water to yield an average subsurface residence time of 20-160 Ma, the oldest age of any waters collected to date in the Witwatersrand Basin. H-2 isotope data suggest the water originated from a depth of 4 to 5 km. Sulfur isotope fractionation indicates biological sulfate reduction. Calculations of free energies and steady state energy fluxes based on water chemistry data also support sulfate reduction as the dominant terminal electron accepting process. Lipid and flow cytometry data indicate a sparse microbial community (10(3) cells ml(-1)), despite the presence of relatively high concentrations of energy-rich compounds (H-2, CH4, CO, ethane, propane, butane, and acetate). The H-2 can be explained by radiolysis of water. Stable isotopic signatures of the CH4 and short chain hydrocarbons indicate abiogenic synthesis. The persistence of energy-rich compounds suggests that other factors are limiting to microbial metabolism and growth, e.g., availability of an inorganic nutrient, such as Fe or phosphate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据