4.4 Article

Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 94, 期 3, 页码 1912-1919

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00256.2005

关键词

-

向作者/读者索取更多资源

The brief time course of the calcium (Ca2+) channel opening combined with the molecular-level colocalization of Ca2+ channels and synaptic vesicles in presynaptic terminals predict sub-millisecond calcium concentration ([Ca2+]) transients of >= 100 mu M in the immediate vicinity of the vesicle. This [Ca2+] is much higher than some of the recent estimates for the equilibrium dissociation constant of the Ca2+ sensor(s) that control neurotransmitter release, suggesting release should be close to saturation, yet it is well known that release is highly sensitive to changes in Ca2+ influx. We show that due to the brevity of the Ca2+ influx the binding kinetics of the Ca2+ sensor rather than its equilibrium affinity determine receptor occupancy. For physiologically relevant Ca2+ currents and forward Ca2+ binding rates, the effective affinity of the Ca2+ sensor can be several-fold lower than the equilibrium affinity. Using simple models, we show redundant copies of the binding sites increase effective affinity of the Ca2+ sensor for release. Our results predict that different levels of expression of Ca2+ binding sites could account for apparent differences in Ca2+ sensor affinities between synapses. Using Monte Carlo simulations of Ca2+ dynamics with nanometer resolution, we demonstrate that these kinetic constraints combined with vesicles acting as diffusion barriers can prevent saturation of the Ca2+-sensor(s) for neurotransmitter release. We further show the random positioning of the Ca2+-sensor molecules around the vesicle can result in the emergence of two distinct populations of the vesicles with low and high release probability. These considerations allow experimental evidence for the Ca2+ channel-vesicle colocalization to be reconciled with a high equilibrium affinity for the Ca2+ sensor of the release machinery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据