4.7 Article

A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues

期刊

EUROPEAN JOURNAL OF MECHANICS A-SOLIDS
卷 24, 期 5, 页码 757-781

出版社

ELSEVIER
DOI: 10.1016/j.euromechsol.2005.05.005

关键词

biological tissues; growth law; mechanobiology; continuum thermodynamics; multi-species mixture

向作者/读者索取更多资源

In previous works, the authors have addressed the chemo-mechanical couplings that control much of the behaviour of many geological materials and biological tissues. The analyses accounted for deformation, mass transfer and generalized diffusion. Simulations of initial and boundary value problems involving equilibrium and transient ionic replacements have been performed via the finite element method. The thermodynamic framework underlying these developments has not been published yet and it is described here. The crux of the paper is to aggregate the phenomenon of growth to the previous models. For that purpose, the mixture system is considered thermodynamically open. The contributions, by the surroundings, to the balances of mass, momentum, energy and entropy of each species of the mixture, and of the mixture as a whole, are systematically accounted for. Previous studies in single phase solids have ensured satisfaction of the balance equations, but they developed growth laws separately from the thermodynamics, and failed to satisfy the Clausius-Duhem inequality. Using the continuum thermodynamics of irreversible processes in a mixture context, we show here, for the first time, how satisfaction of the Clausius-Duhem inequality motivates and structures the growth law. (c) 2005 Elsevier SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据