4.5 Article

Time-dependent evolution of adducts formed between deoxynucleosides and a model quinone methide

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 18, 期 9, 页码 1364-1370

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx0501583

关键词

-

资金

  1. NCI NIH HHS [CA81571] Funding Source: Medline

向作者/读者索取更多资源

Highly electrophilic quinone methide (QM) intermediates often express a surprising selectivity for weak nucleophiles of DNA even when proximity effects do not guide reaction. On the basis of model studies with an unsubstituted ortho-QM, these observations can now be explained by the reversibility of QM alkylation and the time-dependent shift from kinetic to thermodynamic products. The persistent and most commonly identified QM adducts represent thermodynamic products that typically form in low yield by irreversible reaction with weak nucleophiles such as the N1 and N-2 of dG and the N-6 of dA under neutral conditions. In contrast, strong nucleophiles such as the NI of dA and the N3 of dC generate relatively high yields of their QM adducts. However, these products dissipate over time as the QM is repeatedly regenerated and repartitioned over the available nucleophiles. The adduct formed by the N7 of dG undergoes a similar release of QM as well as deglycosylation at comparable rates. The kinetic products of QM alkylation serve as a reservoir for QM regeneration and transfer that are likely to prolong the cellular activity of an otherwise highly transient intermediate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据