4.4 Article

Stability analysis of pathogen-immune interaction dynamics

期刊

JOURNAL OF MATHEMATICAL BIOLOGY
卷 51, 期 3, 页码 247-267

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00285-005-0321-y

关键词

infectious diseases; immune response; stability; Hopf bifurcation; symbolic calculation software

向作者/读者索取更多资源

The paper considers models of dynamics of infectious disease in vivo from the standpoint of the mathematical analysis of stability. The models describe the interaction of the target cells, the pathogens, and the humoral immune response. The paper mainly focuses on the interior equilibrium, whose components are all positive. If the model ignores the absorption of the pathogens due to infection, the interior equilibrium is always asymptotically stable. On the other hand, if the model does consider it, the interior equilibrium can be unstable and a simple Hopf bifurcation can occur. A sufficient condition that the interior equilibrium is asymptotically stable is obtained. The condition explains that the interior equilibrium is asymptotically stable when experimental parameter values are used for the model. Moreover, the paper considers the models in which uninfected cells are involved in the immune response to pathogens, and are removed by the immune complexes. The effect of the involvement strongly affects the stability of the interior equilibria. The results are shown with the aid of symbolic calculation software.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据