4.7 Article

Phase transition in random catalytic networks

期刊

PHYSICAL REVIEW E
卷 72, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.036117

关键词

-

向作者/读者索取更多资源

The notion of (auto)catalytic networks has become a cornerstone in understanding the possibility of a sudden dramatic increase of diversity in biological evolution as well as in the evolution of social and economical systems. Here we study catalytic random networks with respect to the final outcome diversity of products. We show that an analytical treatment of this long-standing problem is possible by mapping the problem onto a set of nonlinear recurrence equations. The solution of these equations shows a crucial dependence of the final number of products on the initial number of products and the density of catalytic production rules. For a fixed density of rules we can demonstrate the existence of a phase transition from a practically unpopulated regime to a fully populated and diverse one. The order parameter is the number of final products. We are able to fully understand the origin of this phase transition as a crossover from one set of solutions from a quadratic equation to the other. We observe a remarkable similarity of the solution of the system and the PVT diagrams in standard thermodynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据