4.6 Article

Damage-induced modeling of asphalt mixtures through computational micromechanics and cohesive zone fracture

期刊

JOURNAL OF MATERIALS IN CIVIL ENGINEERING
卷 17, 期 5, 页码 477-484

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0899-1561(2005)17:5(477)

关键词

-

向作者/读者索取更多资源

This paper presents a computational micromechanics modeling approach to predict damage-induced mechanical response of asphalt mixtures. Heterogeneous geometric characteristics and inelastic mechanical behavior were taken into account by introducing finite element modeling techniques and a viscoelastic material model. The modeling also includes interface fracture to represent crack growth and damage evolution. The interface fracture is modeled by using a micromechanical nonlinear viscoelastic cohesive-zone. constitutive relation. Fundamental material properties and fracture characteristics were measured from simple laboratory tests and then incorporated into the model to predict rate-dependent viscoelastic damage behavior of the asphalt mixture. Simulation results demonstrate that each model parameter significantly influences the mechanical behavior of the overall asphalt mixture. Within a theoretical framework of micromechanics, this study is expected to be suitable for evaluating damage-induced performance of asphalt mixtures by measuring only material properties and fracture properties of each mix component and not by recursively performing expensive laboratory tests that are typically required for continuum damage mechanics modeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据