4.4 Article

Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy

期刊

LASERS IN SURGERY AND MEDICINE
卷 37, 期 3, 页码 219-226

出版社

WILEY-LISS
DOI: 10.1002/lsm.20223

关键词

laser; cancer; selective photothermolysis; gold nanoparticles; bubbles; nanoclusters

资金

  1. NIBIB NIH HHS [R01 EB000873] Funding Source: Medline

向作者/读者索取更多资源

Background and Objective: We developed a new approach that enhances selective photothermolysis of tumor through laser activation of synergistic phenomena around nanoclusters, which are self-assembled into cancer cells. Study Design/Materials and Methods: In vitro verification of this approach was performed by laser pulse irradiation (420-570 nm and 1064 nm; 8-12 nanosecond; 0.1 - 10 J/cm(2)) of MDA-MB-231 breast cancer cells targeted with primary antibodies to which 40-nm gold nanoparticles were selectively attached by means of secondary antibodies. Photothermal (PT) radiometry, thermolens techniques, electron microscopy, atomic force microscopy, silver and gold enhancing kits, and viability test (Annexin V-propidium iodide) were employed to study nanoparticle spatial organization, the dynamics of microbubble formation, and cell damage. Results: The assembly of gold nanoclusters on the cell membrane was accompanied by increased local absorption and red-shifting as compared to cells that did not have nanoclusters. These effects were amplified by a silver-enhancing kit and pre-irradiation of cells with low laser-pulse energy. Finally, a significant increase in laser-induced bubble formation and cancer cell killing was observed using near-IR lasers (1064 nm). A cancer cell antigens was used to provide target specificity for nanoclusters formation making the cancer cells sensitive to laser activation. Conclusion: The described approach uses relatively small and simple gold nanoparticles offering more effective delivery to target. In addition, the further self-assembling of these nanoparticles into nanoclusters on live cells provides significant enhancement of laser-induced cell damage. These nanoclusters (gold nanobombs) can be activated in cancer cells only by confining near-IR laser pulse energy within the critical mass of the nanoparticles in the nanoclusters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据