4.6 Article

Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera

期刊

PLOS PATHOGENS
卷 1, 期 1, 页码 92-98

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.0010008

关键词

-

资金

  1. NIAID NIH HHS [R21 AI064800, R21 AI064800-02] Funding Source: Medline
  2. NIDDK NIH HHS [P30 DK034928] Funding Source: Medline

向作者/读者索取更多资源

Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i) death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii) flies harboring mutant alleles of either adenylyl cyclase, Gs alpha, or the Gardos K+ channel homolog SK are resistant to V. cholerae infection; and (iii) ingestion of a K+ channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mu g of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据